VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (CBCS) III-Semester Main Examinations, December-2017

Linear Algebra and its Applications

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A ($10 \times 2=20$ Marks)

1. Give any two examples of vector space.
2. Show that the set of matrices $S=\left\{\left[\begin{array}{cc}-1 & 0 \\ 2 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\right\}$ Does not span $\mathrm{M}_{2} \times 2$. Describe span (S).
3. Find $[\mathrm{V}]_{\mathrm{B}}$, given $B=\left\{\left[\begin{array}{l}3 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 2\end{array}\right]\right\} ; \mathrm{V}=\left\{\left[\begin{array}{l}8 \\ 0\end{array}\right]\right\}$
4. Let V and W be vector spaces, and let $T: V \rightarrow W$ be a linear transformation. Then show that $\mathrm{T}(0)=0$.
5. Define a linear operator $\mathrm{T}: R^{2} \rightarrow R^{2}$ by $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{l}2 x-3 y \\ 5 x+2 y\end{array}\right]$. Show that T is one-to-one
6. Define linear transformation $T: P_{4} \rightarrow P_{3}$ by $\mathrm{T}(\mathrm{p}(\mathrm{x}))=\mathrm{p}^{\prime}(\mathrm{x})$. Find the null space and range of T.
7. Find the angle between the two vectors $u=\left[\begin{array}{r}2 \\ -2 \\ 3\end{array}\right]$ and $v=\left[\begin{array}{r}-1 \\ 2 \\ 2\end{array}\right]$
8. Find projv \mathbf{u}. Where $\mathbf{u}=\left[\begin{array}{c}3 \\ -2\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$
9. Find the scalar \mathbf{c}, so that $\left[\begin{array}{r}-1 \\ c \\ 2\end{array}\right]$ is orthogonal to $\left[\begin{array}{r}0 \\ 2 \\ -1\end{array}\right]$
10. Define Inner Product Vector Space.

$$
\text { Part-B }(5 \times 10=50 \text { Marks })
$$

(All sub-questions carry equal marks)
11. a) Write all 10 vector space axioms and show that $\mathrm{M}_{2 \times 2}$ with the standard component wise operations is a vector space.
b) Let W be the subspace of all symmetric matrices in the vector space $\mathrm{M}_{2 \times 2}$.

Let $B=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$
show that B is a basis for W and find the coordinates of $v=\left[\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right]$ relative to B.
12. a) Let $V=\mathrm{R}^{2}$ with bases $B=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$ and $B^{\prime}=\left\{\left[\begin{array}{r}2 \\ -1\end{array}\right]\left[\begin{array}{r}-1 \\ 1\end{array}\right]\right\}$

Find the transition matrix from B to B^{\prime}. Let $[v]_{B}=\left[\begin{array}{r}3 \\ -2\end{array}\right]$ and find $[v]_{B^{\prime}}$.
b) Let $\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}0 \\ 2 \\ 21\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{c}-3 \\ 4 \\ 7\end{array}\right]$ and let $W=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
i) Show that \mathbf{v}_{3} is a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}.
ii) Show that $\operatorname{span}\left\{\mathbf{v}_{1} ; \mathbf{v}_{2}\right\}=W$.
iii) Show that \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent.
13. a) Define a Mapping $T: R^{2} \rightarrow R^{2}$ by $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{l}x+y \\ x-y\end{array}\right]$.
i) Find the image of the coordinate vectors e_{1} and e_{2} under the mapping T.
ii) Give a description of all vectors in R^{2} that are mapped to the zero vector.
b) Define a linear transformation $\mathrm{T}: P_{2} \rightarrow P_{3}$ by $T(f(x))=x^{2} f^{\prime \prime}(x)-2 f^{\prime}(x)+x f(x)$. Find the matrix representation of T relative to the standard bases for P_{2} and P_{3}.
14. a) Let V and W be finite dimensional vector spaces and $\boldsymbol{B}=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ a basis for V. if $T: V \rightarrow W$ be a linear transformation. Then $R(T)=\operatorname{span}\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), \ldots, T\left(\mathbf{v}_{\mathbf{n}}\right)\right\}$,
b) Define $T: R^{3} \rightarrow R^{3}$ by $T=\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{r}x \\ -y \\ z\end{array}\right]$.
i) Find the matrix of T relative to the standard basis for R^{3}.
ii) Use the result of part (a) to find $T\left(\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]\right)$
15. a) State and prove triangle inequality on vector spaces.
b) Let $u=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ and $v=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
i) Find projv \boldsymbol{u}.
ii) Find \mathbf{u} - $\operatorname{proj}_{\mathbf{v}} \boldsymbol{u}$ and verify that $\operatorname{projv}_{\boldsymbol{v}} \boldsymbol{u}$ is orthogonal to $\mathbf{u}-\operatorname{proj}_{v} \boldsymbol{u}$.
16. a) If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is an orthogonal set of nonzero vectors in an inner product space V, then prove that S is linearly independent.
b) Let $\mathrm{V}=P_{2}$ with inner product defined by $\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x$.
i) Show that the vectors in $S=\left\{1, x, \frac{1}{2}\left(3 x^{2}-1\right)\right\}$ are mutually orthogonal.
ii) Find the length of each vector in S .
17. Answer any two of the following:
a) Let $S=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ -2\end{array}\right]\right\}$ find the basis for span of S.
b) Let $T: R^{3} \rightarrow R^{3}$ be a linear operator and $\mathrm{B}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ a basis for R^{3}. Suppose that $T\left(v_{1}\right)=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] \quad T\left(v_{2}\right)=\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right] \quad T\left(v_{3}\right)=\left[\begin{array}{r}2 \\ 1 \\ -1\end{array}\right]$
i) Is $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ in $\mathrm{R}(\mathrm{T})$?
ii) Find a basis for $\mathrm{R}(\mathrm{T})$.
c) Let $V=\mathrm{R}^{3}$ and $u=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$ and $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ be vectors in V. let k be a fixed positive real number, and define the function $\langle\ldots\rangle:, R^{2} x R^{2} \rightarrow R$ by $\langle u, v\rangle=u_{1} v_{1}+k u_{2} v_{2}$. Show that V is an inner product space.

