Hall Ticket Number:

Code No. : 13110 LAA

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CBCS) III-Semester Main Examinations, December-2017

Linear Algebra and its Applications

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

- 1. Give any two examples of vector space.
- 2. Show that the set of matrices
 - $S = \left\{ \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \right\}$ Does not span M_{2 X 2}. Describe span (S).
- 3. Find $[V]_B$, given $B = \left\{ \begin{bmatrix} 3\\1 \end{bmatrix}, \begin{bmatrix} -2\\2 \end{bmatrix} \right\}$; $V = \left\{ \begin{bmatrix} 8\\0 \end{bmatrix} \right\}$
- 4. Let V and W be vector spaces, and let $T: V \rightarrow W$ be a linear transformation. Then show that T(0) = 0.
- 5. Define a linear operator T: $R^2 \to R^2$ by $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 2x 3y \\ 5x + 2y \end{bmatrix}$. Show that T is one-to-one
- 6. Define linear transformation $T: P_4 \rightarrow P_3$ by T(p(x)) = p'(x). Find the null space and range of T.
- 7. Find the angle between the two vectors $u = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$ and $v = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$
- 8. Find projv **u**. Where $\mathbf{u} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ 9. Find the scalar **c**, so that $\begin{bmatrix} -1 \\ c \\ 2 \end{bmatrix}$ is orthogonal to $\begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$
- 10. Define Inner Product Vector Space.

Part-B $(5 \times 10 = 50 \text{ Marks})$

(All sub-questions carry equal marks)

- 11. a) Write all 10 vector space axioms and show that M_{2 x 2} with the standard component wise operations is a vector space.
 - b) Let W be the subspace of all symmetric matrices in the vector space $M_{2 \times 2}$.

Let
$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

show that B is a basis for W and find the coordinates of $\mathbf{v} = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$ relative to B.

:: 2 ::

12. a) Let $V = \mathbb{R}^2$ with bases $B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$ and $B' = \left\{ \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$

Find the transition matrix from B to B'. Let $[\mathbf{v}]_{B} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ and find $[\mathbf{v}]_{B'}$.

- b) Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ 21 \end{bmatrix}$ $\mathbf{v}_3 = \begin{bmatrix} -3 \\ 4 \\ 7 \end{bmatrix}$ and let $W = \mathbf{Span} \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \}.$
 - i) Show that v_3 is a linear combination of v_1 and v_2 .
 - ii) Show that span $\{\mathbf{v}_1, \mathbf{v}_2\} = W_1$
 - iii) Show that \mathbf{v}_1 and \mathbf{v}_2 are linearly independent.

13. a) Define a Mapping T:
$$R^2 \rightarrow R^2$$
 by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+y \\ x-y \end{bmatrix}$.

- i) Find the image of the coordinate vectors e_1 and e_2 under the mapping T.
- ii) Give a description of all vectors in \mathbb{R}^2 that are mapped to the zero vector.
- b) Define a linear transformation T: P₂ → P₃ by T(f(x)) = x² f''(x) 2 f'(x) + xf(x). Find the matrix representation of T relative to the standard bases for P₂ and P₃.
- 14. a) Let V and W be finite dimensional vector spaces and $B = \{v_1, v_2, ..., v_n\}$ a basis for V. if $T: V \to W$ be a linear transformation. Then $R(T) = \operatorname{span}\{T(v_1), T(v_2), ..., T(v_n)\}$,

b) Define T:
$$R^3 \rightarrow R^3$$
 by $T = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} x \\ -y \\ z \end{bmatrix}$.

- i) Find the matrix of T relative to the standard basis for \mathbb{R}^3 .
- ii) Use the result of part (a) to find $T \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- 15. a) State and prove triangle inequality on vector spaces.
 - b) Let $u = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
 - i) Find projv u.
 - ii) Find $\mathbf{u} \operatorname{proj}_{\mathbf{v}} \mathbf{u}$ and verify that $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ is orthogonal to $\mathbf{u} \operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
- 16. a) If $S = \{v_1, v_2, \dots, v_n\}$ is an orthogonal set of nonzero vectors in an inner product space V, then prove that S is linearly independent.
 - b) Let V = P₂ with inner product defined by $\langle p,q \rangle = \int_{-1}^{1} p(x)q(x)dx$.
 - i) Show that the vectors in $S = \{1, x, \frac{1}{2}(3x^2 1)\}$ are mutually orthogonal.
 - ii) Find the length of each vector in S.

17. Answer any two of the following:

a) Let
$$_{S} = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\-2 \end{bmatrix} \right\}$$
 find the basis for span of S.

b) Let T: $\mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator and B = {v₁, v₂, v₃} a basis for \mathbb{R}^3 . Suppose that

$$T(v_1) = \begin{bmatrix} 1\\1\\0 \end{bmatrix} \qquad T(v_2) = \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \qquad T(v_3) = \begin{bmatrix} 2\\1\\-1 \end{bmatrix}$$

i) Is
$$\begin{bmatrix} 1\\2\\1 \end{bmatrix}$$
 in R(T)?

ii) Find a basis for
$$R(T)$$
.

c) Let $V = \mathbb{R}^3$ and $u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ and $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ be vectors in V. let k be a fixed positive real number, and define the function $\langle u_1 \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ by $\langle u_1 v_1 \rangle = u_1 v_1 + bu_1 v_2$. Show that V is an inverse

and define the function $\langle .,. \rangle : R^2 x R^2 \to R$ by $\langle u, v \rangle = u_1 v_1 + k u_2 v_2$. Show that V is an inner product space.

ശ്രദ്ധങ്ങള